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Abstract. An alternative theoretical approach to the
polarization propagator based on a new finite expansion
of a finite-dimensional matrix is presented. The general
equations for such an expansion are derived and the
validity conditions stated. This method is used to
accomplish an approximate scheme for the self-energy
of the particle-hole propagator within the superoperator
formalism. Within this scheme each contribution in-
cludes corrections to infinite order in electronic interac-
tion and so describes collective effects in a natural way.
Individual contributions can be interpreted as describing
the propagation of the interaction through a particular
subset of electronic excitations. Comparison with other
known approximation levels, such as the random-phase
approximation, is also analyzed.
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1 Introduction

Propagator methods have been widely used in atomic
and molecular physics for studying electronic transitions
(neutral excitations, ionization and electron attachment
processes, etc.) and molecular response properties.
Different kinds of propagators appear in the literature
according to the nature of the physical property under
study, such as the electron propagator (EP), the particle—
hole (p-h) propagator, the polarization propagator (PP),
etc. [1-12]. Propagator methods appear as strikingly
attractive, since excitation energies and transition mo-
ments can be evaluated without calculation of the excited
states and energies of the system under consideration.
Several approximation schemes for propagators have
been developed. Among those which may be based on a

Present address: Department of Molecular Biology, TPC-28

The Scripps Research Institute, 10550 North Torrey Pines Road,
La Jolla, CA 92037, USA

e-mail: cclaudio@scripps.edu

diagrammatic expansion the random-phase approxima-
tion (RPA) for the PP [1], the outer valence Green
function for the EP [6] and the algebraic diagrammatic
construction for the EP [13] or for the PP [14] should be
mentioned. Other methods are the so-called algebraic
ones, such as the equation-of-motion method [15] and the
equivalent superoperator formulation of the propagator
via inner projection techniques [2, 5, 7-10, 12, 16-18].

Using the superoperator formalism, truncating the
operator manifold used in the inner projection and with
a suitable choice of the ground-state reference state, a
perturbative expansion of the PP is achieved, where the
order concept is defined by the fluctuation potential, i.e.,
the electronic repulsion minus the Fock potential [7, 18].
Analogous expressions hold for the EP [2, 8,9, 16, 17]. It
should be mentioned that this perturbative expansion of
the propagator can also be represented diagrammatically
[9, 18]. To a given order, the perturbative scheme of the
PP takes into account collective effects of the system,
represented by the infinite sum of certain classes of
diagrams [19].

The second-order PP approach (SOPPA) has been
succesfully used to calculate excitation energies [20, 21]
and response properties (Ref. [12] and references therein
[22, 23]). However, in certain low convergent systems,
results at the SOPPA level were unsatisfactory, and im-
provements in the reference ground state were necessary
to obtain reliable results (Ref. [24] and references there-
in). It is known that in such systems, collective effects
play an important role [7, 18, 19]. For a given order n, the
PP includes collective effects in a selective way, since only
those infinite sums of diagrams which begin at order n or
lower will appear in the n-order approach to the PP.

In this article a new method called the finite expansion
of the inverse matrix (FEIM) is presented and applied to
the propagator expression within the superoperator for-
malism. The underlying idea of the FEIM method is to
express each element of the inverse of an N-dimensional
matrix, X, as a finite sum of terms, where each term in the
expansion is characterized by a definite subset of matrix
indices K = {ij <i» < -+ < iy} <,y (i; refers to a gen-
eral index) and represents the sum of all terms that in a
conventional perturbative series of X~! involve matrix
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elements X,,,, with m,n € K. Since the number of indices
subsets, K, is finite (for a finite-dimension matrix), the
number of terms in the FEIM remains finite. A related
method called “‘succesive inversion” was proposed to
calculate the inverse matrix [25-27].

The FEIM method is used in the analysis of the as-
sociated self-energy of the p-h propagator, where each
individual contribution to the finite expansion can be
considered as describing the propagation of the inter-
action through the elements of the particular subset, K.
It should be noted that for the p-h propagator, matrix
indices refer to electronic excitations from occupied to
virtual molecular orbitals. Each contribution includes
corrections to infinite order in the electronic interaction,
i.e., involves a sum of diagrams to infinite order, and so
it may be asserted that each term of the expansion takes
into account collective effects in a natural way.

For a finite operator manifold and an approximate
reference state, the approach to the self-energy within
the FEIM method is readily obtained by including in
the finite expansion only certain terms which may be
selected according to the type of interaction terms and
the transmission paths one wishes to include in the
calculation, and not according to a given perturbative
order in the electronic interaction.

This method offers the feature of selecting terms ac-
cording to physical criteria, and so those which are
suspected of being negligible may in a first attempt, be
omitted and others may be included, regardless of the
perturbative order at which they first appear. One may
suppose at first glance that the higher the order at which
a particular term in the expansion first appears, the less
influence it should have; however, when dealing with
infinite series of diagrams, the perturbative order at
which they begin cannot be considered as a definite
criterion. If results obtained with a particular selection
of terms should be improved, new terms may be simply
added to the existing ones in a straighforward way.

In Sect. 2 the general equations for a finite expansion
of the inverse of a Hermitian matrix are derived. In
Sect. 3 a comparison of the FEIM method with the
perturbative series of the inverse is presented and a
diagrammatic interpretation of the FEIM is outlined.
Section 4 is devoted to the FEIM analysis of the p-h self-
energy and finally, in Sect. 5 a short summary is given.

2 Decomposition of the inverse matrix as
a finite sum of terms

Let us consider a Hermitian matrix X and its inverse Y,
both of finite dimension N, partitioned as

X~y w)- (1)

v=(§ %) ®

where dim(T) = dim(R).
In what follows, matrix indices may label either in-
dividual matrix elements or whole submatrices. The

partitioning of matrices X and Y is chosen depending on
whether one seeks an expression for the diagonal ele-
ment or block (i7) of X! or for the nondiagonal one (ij).
In the former case, T and R are characterized by index i
and in the latter by indices i and ;. Elements with these
particular choices of indices can always be brought to
the upper left position of the matrix by redefinition of
the indices.

We intend to prove that element (ij) of Y [for the (i)
element just take j = i] may be written in the form of a
finite expansion as

N N

Yy =Ry =F/+ Y F(k) + > Fi(k, )
k k<l

ki kol

N
+ 3 F ke Lm) + A Bk L N) ()
k<l<m
k.l.m#i j

In Eq. (3) F” represents the contribution to element
(if) of X! arising from elements of matrix X which in-
volve only indices i and j, i.e., X;;, X;;, X;; and X;;. The
term FY(k) collects the contribution of elements with
indices i, j and k, where k should be different from the
other indices, since if k = i or k = j, this contribution has
already been taken into account in FV. The term F(k, /)
collects the contributions of elements with indices 7, j, k
and [/, and so on. Indices in each term FY(k,[,...) are
always different, since contributions with repeated indi-
ces were included in previous F”(...) which involve a
smaller number of indices.

A natural way to interpret this expansion would be to
consider that F" represents some kind of direct interac-
tion between i and j; F”(k) represents the same type of
interaction, but transmitted through &, and so on. We
stress the fact that FY(k) collects all interaction terms
between i and j where k is involved. FY(k, [) represents
the interaction transmitted through k& and /, and so on.

Using the partitioning technique [27] R may be
written as (indices i and j are omitted when no confusion
may arise)

R=[T-MW M = [1+T 'MW 'M
+(T'MW M) + ... 1!

=JT' . (4)

It is assumed that the inverse matrix of T exists. From
the comments after Eq. (2), this means that det(X;;) # 0
(when indices label individual matrix elements, this is
simply equivalent to X;; # 0) and that the matrix formed
by Xii, X;;, X;; and Xj; also has an inverse.

Since dim(W) < N, it can be considered as an induc-
tive hypothesis that elements (W™'),, have the same type
of expansion as those of Eq. (3); moreover, the only dif-
ference in the expansions of (X™'),, and (W™'),, is that in
the latter case terms involving indices i or j do not appear.

The product MW~ 'M can thus be expressed as

MW M = ZK(U)(k) + ZK(U)(k’ D+--- . (5)
k k<l
ki j kl#ij



Matrices K%) only depend on indices i and j through
matrices M. If the ‘diagonal element (if) of the inverse
were sought, the G would be complex numbers; for the
non-diagonal (ij) ones, they would be 2 x 2 matrices and
when indices represent submatrices they will be matrices
of higher dimension.

Using the FEIM methzod for W, MW~'M' may be

written as
Z M, (W lq

Z Mpk Fkl Z Fkl

m

mk 1

(MW-'MT)

i Z F¥ (m,n) + - - qu 7 (6)
m;x;;l

where p,q € {i,/j}.

The order of factors is preserved in order to include
the case when F¥(...) are true matrices, which occurs
when indices label submatrices. Grouping together terms
with £ = [ and with k # [, Eq. (6) can be expressed as

" ki
ZMP F"+ZF""
m#

(MW~'M"),

Y ) | M

m<n

m.n#k
+) My [F 4+ F (m)
k;él m;é”k.[
+ 3 F(mn)+ M (7)
vk

and collecting together terms according to an increasin
number of different sum indices, the product MW~'M
can be finally expressed as

—1 1—
(MW M)

= > MFM T M ()
k

k<l

+ MM, + M F! ()M, + MP,F”‘M,T“J

+ 30 [MF (1 m) M, + M F (k)M

k<l<m
+ My, B (k, )M, + M FY ()M,
+ M, (m)M], + M F" ()M},
+ M F" ()M}, + M, F" (1)M],

+ Mmeml(k)MIq} 4o (8)

493

By comparing Egs. (5) and (8), the first K& (...)
matrices can be identified as

K{)) (k) = MuF*M;, ®)
KU (k, 1) = MuF* ()M, + M, F/M],

+ M, F ()M, + M F*M], (10)
K\ (k, 1,m) = MyuF“ (L mMJ, + MyuF" (k, m)M]

+ ML, B (k, )M, + M, F¥ ()M,
+ M, F*(m)M], + M F ()M},
+ M, F™ ()M}, + M, F™ ()M},

+ M, F" ()M, . (11)
The general term may be expressed as

KD (ki ka, . k)
n
= Z Mpkll Fk[lkll (klza s 7k n)MlJ[t,lq
=1

Iy.dp=1
I#1

7kln)MZt[2q ) (12)

where p,q € {i,j}, ki <ky <--- <k, and the subset
(ki,,-..,k;,) is the ordered set (ki k... k), where
k;, is missing [an analogous interpretation holds
for (kiy, ..., ki)l

According to Eq. (4), matrix J can be expressed as

-y

Using Eq. (5) and the multinomial expansion, J may be
written as

'Mw-'MT]" . (13)

J= il <ZK” +ZK<’7)(k,l)+~->]
n=0 k<l
0 n! - n
—— T[T 'K (k
% 3 (i T

{nkim b
ngg =

H[ T-1IK ) ( kl} !

k<

< 11 {TflK(m (k, 1, m)]n“m. . )

k<l<m
=Jo+ > JE)+ > Ik D+ (14)
k k<l

It is expedient to analyze the expansion of J
in Eq. (14) according to the number of indices k, [, m, . ..
involved in the sums of its right-hand side (rhs). The
term Jy corresponds to the case » = 0 in the multinomial
expansion, and thus

Jo=1. (15)
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Using this result in Eq. (4) and by comparing with
Eq. (3), the first terms in the FEIM can be identified as

Fi=T"'= X", (16)

Gﬁ&)l
X;i Xy y

In deriving Eqs. (16) and (17) different partitions of X
were taken in each case, according to what was said after
Eq. (2).

The next term to be considered corresponds to the
case where all but one of the n; are zero, which will
be noted n, According to Eq. (14) the associated
contribution takes the form

J(p) = Z[T KO (p ] i[T KD (p }—1

n=1 n=0

_ {1 —T’IK(ij)(p)} 1

F/=(T), = (17)

(18)

With contributions of Egs. (15) and (18), the matrix
R may be written, following Eq. (4) as

R = 1+ZN:[(1—T_1K(U)(p))_1 —1} T

. EN: [(T — KO (p))!

By comparing Egs. (3) and (19) and taking into ac-
count the expressions of Egs. (16) and (17), one obtains

—T*I} . (19)

F/(k) = [T =KD o) =T7!] (20)
ij
In the usual case where indices refer to single matrix
elements, the term F" (k) is expressed as
M; My,
Tii(TiTi — My My;)
Xul®
= X = (21)
Xii (XX — [Xie| )
where Eq. (9) has been used.

It is important to note that if the nondiagonal part of
matrix X defines a certain perturbative order, F"(k)
represents a correction to the diagonal element of the
inverse which begins in the second order but which
includes in addition terms summed up to infinite order.

An analogous expression for F”(k) can be obtained
from Egs. (9) and (20) in the form

MMy MMy, \ !
i R el A
F (k) = T* *M;/ T j]\M](]
ij i

T Tk

Te T\ (22)
T i) |
ij

The next terms to be considered are those which in-
volve two different indices, £ and /. The corresponding
term in Eq. (14) is

Fi(k) =

Nk

U e
Z 3 W[T 'K (k)|

TNk
ng+ni+ng=n
nj,nFn

x [T’IK(ij)(l)]”l =K (k, 1)} ! (23)
Terms with n; =n and n; = n are excluded, since they
have already been taken into account in terms J(k) and
J(7), respectively.

By adding and subtracting terms with n =0, n; = n
and n; = n, the sum of Eq. (23) can be written as

00 ! B .
Z Z nk!nn;!nk;! {T IK(ID(k)}

n=0 """
npAnptng=n

Nk

J(k, 1) =

Rkl

X {T’IK(”)(I)]HI [T*1K<lif>(k, 1)} -1

_ i [T—IK(U) (k)} " i {T—lK(ij)(l)] !

n=1

(24)

The second sum of the first term on the rhs of
Eq. (24) is the multinomial expansion of [T~ (K" (k)+
K (1) + K% (k,1)]" and according to Egs. (18) and
(20), the last two terms in Eq. (24) correspond to

3 TR ()] = FiT

n=1

(25)

with an analogous expression for /.
In this way, J(k, /) may be expressed in a condensed
form as

3 1) = [1= T KO (k) - TR (1)
=T 'K (k, 1)}_1—1 ~FI(KT - F/()T . (26)
Finally, from Eqgs. (3) and (4), the term FY(k, /) may
be obtained as
F/(k,1) = J(k, )T
= {[T — K@ (k) =KW (1) — KWk, l)]fl

fT—I]gFU(k) —F(]) . (27)
ij

It can be inferred that FY(k, [) is expressed in terms of
the results of previous calculations.

Proceeding in an analogous way, the general term can
be readily obtained as

FV (ki k... ky)

= KT - iK(ij) (kr)

- § KD (k... 1)
kll <---<k,”7]
e{ky ko kn}

_ Z K(ij)(kl, k) —

I<m

-1
— KD (ky, ks, ... ,k,,)) —T!

=S ) = Bk ) —
=1

I<m

ij



- Y Filky,.. k) (28)

k) <<k
1y <K,y
€{ky degoin}

where k1 < ky < ... <k,.

3 Comparison of the FEIM method
with the perturbative expansion of the inverse

For a better understanding of the FEIM method, let us
consider a perturbative expansion of X! in the form

X=X+ X7 = X5 = XX X!
X XX XX - (29)

where X is a diagonal matrix and X; can be regarded as
a perturbation.

The basic idea of the FEIM is to group in a single
term, FY(ky, ks, ..., kn), all the contributions to element
(ij) of X! that, on the rhs of Eq. (29), involve products
of matrix elements X,,, with m,n € {i, ki, ka, ... km,Jj}-

This can also be seen in a pictorial way. By choosing
the partition in Eq. (29) such that (X;),, =0 and
by representing by dots the diagonal terms (Xo),, and
by segments joining those dots the terms (Xi),,
FY(ki, ks, ..., k,) may be represented by a sum of infinite
diagrams constructed following these rules:

— Draw m + 2 dots aligned labeled {i, ki, k2, - - -, ki, j}-
— Beginning with i and ending with j (or vice versa), join

all dots with lines. Each dot must be joined at least once.
— There are no closed loops, since (X;),, = 0.

The term FY(ky,kz, ..., k,) is obtained by summing
all the diagrams drawn joining the m + 2 dots in all
possible manners, following the rules given previously.
The first diagrams of the F”(k) term look like

i j i j
Fi(k) = Ik + @Jr %+ (Pk deee (30)

The number of lines is the number of (Xj),,, terms that
appears in each diagram, i.e., the order in the interaction
represented by X;. Of course, if we chose the partition-
ing of X in Eq. (29) by removing the constraint
(X1); =0, closed loops should also be included.

On modifying the elements with index k; in matrix X,
R;; will change; however, in the expansion of Eq. (3) only
the terms F”(- - -) involving index k; will be altered. Thus,
the FEIM provides a quantitative measure of the influ-
ence of elements of the original matrix on its inverse.

4 The FEIM method and the self-energy
of the p-h propagator

4.1 The PP

The Fourier transform of the double-time Green func-
tion (propagator) of two operators A and B may be
written in the superoperator formalism [16, 17] as
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(A;B) = (AT|(E1 - H)"'B) | (31)

where ((A;B)); is the propagator in the energy domain
and H and | refer to the superoperators Hamiltonian and
identity, respectively, the action of which on an arbitrary
element of the operators space {A;} is defined as [16, 17]

HA; = [H,A]]_ (32)
A=A . (33)

A binary product between operators is introduced by
means of the mean value

(XIY) = (g [IXE, Yl (34)

where |y) is the exact reference ground state of the
system of N particles.

Following the Mgller—Plesset partitioning, the Ham-
iltonian of the system may be expressed in terms of
a zero-order (Fock operator) and a first-order part, as
follows:

H=F+V, (35)
where
F= Zsiajai , (36)
i
1 . - s
V= ZZ (ijllklyafatara; — " (io|jer)ala; - (37)
ijkl ijol
In what follows, indices o, f3, y, ... (m, n, p, ...) denote
occupied (virtual) Hartree—Fock spin-orbitals, and i, j,
k, ... refer to unrestricted indices.

In fact, Eq. (31) may be written in a more useful form
via the inner projection technique [28] as

(A;B); = (AT|n)(h|ET — Alh) ' (h[B) (38)

where the superoperator inverse is avoided in favor of an
inverse matrix and h stands for a complete operator
basis [29]. When A and B are number-conserving one-
electron operators, ((A;B)), is called the PP, in which
case h may be chosen as [29]

(h} = {hy,hy,...} | (39)

where hyy includes both the Nparticle-Nhole excitation
(Np-Nh) and Nhole-Nparticle (Nh-Np) deexcitation
manifolds, defined as

{hz} = {‘ﬂﬂ]} = {ajnamaiam} ) (40)
{hs} = {q'q",qq}

= {aInaaalaﬂ,alamazan} m>n, a>f, (41)
and so on.

Different truncations of h will lead to approximate
expressions of the PP. In particular, the choice
h = {hy,hs} suffices to determine the principal propa-
gator consistent to third order in the residual potential
V, provided that the reference ground state is also
appropriately approximated [18].

This choice of the manifold, h, together with a ground
state exact to first order in Rayleigh—Schrédinger per-
turbation theory and a few second-order terms origi-
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nating from single excitations, ensures a PP consistent to
second order in V (SOPPA [7, 20]).

The principal propagator P(E) in a second-order
theory takes the form [20]

= ES — (q'[Hla") — (a'[VID)(IET - HIf)~!

x (V") (50)

(aa")"

(ah:  (aa):
(aa" e (a":a)g
_ (ESAC[EID]IC -B

P(E)' = [

-1
-B —ES—A—C[—EI—D]1C> ’

(42)

where the matrices involved are asumed to be real and
are defined as

A1 = (qfAl§) = (alFIG) | (43)
B = (qlHId") = (a'lAld) , (44)
c = (q'q'|V|g") (45)
DO = (q'q'|Flqiql) , (46)

where the superscripts denote the order in the electronic
repulsion and explicit expressions can be found in Ref.
[10]; the expression for C(1) in Ref. [10] has the wrong
sign. The metric used at this level of approximation is
given by

s 0 0 0
0 -s® o o

(hjh) =1 0 0 1 0 (47)
0 0 0 -1

By evaluating the left upper block of the inverse in
Eq. (42), the self-energy associated with the SOPPA p-h
propagator ((q;q')); can be expressed as

X(E) = —ESY + A2 4 C(E1-D)"'C

+]~3[—ES—A—(~3(—E1—D)’1C B. (48

4.2 The FEIM analysis of the p-h propagator

However, another approach using the FEIM method is
also possible. Using the metric of Eq. (47) and parti-
tioning h = {hy,h,} into a primary p-h manifold, q', and
a secondary space, f, orthogonal to it, which groups the
h —p, 2p — 2h and 2h — 2p manifolds, the p-h propa-
gator may be expressed in matrix form from Eq. (38) as

S — (@l i\
@@wf—So( (i) <?U?)
SOV§)  mE - Al

X (S) , (49)
0

where f is used as an eigenstate of F.
It is readily seen that only the upper left block of the
inverse is relevant and

is obtained, where S was taken as the identity matrix on
both sides of the brackets in Eq. (50) to perform an
analysis consistent with Eq. (48). A Dyson-like equation
can thus be extracted in the form

(@:a');' = Go(E)' —X(E) (51)
where

Go(E)"' = E1—-A© | (52)
X(E) = —ESP + A" ¢ (¢f|V[E)(FIET — HIT) ™

x (fIV]a') - (53)
The third term of the rhs of Eq. (53) is called E(E)/,
being expressed in matrix form as
-1

~ES-A G C
SE) =B C-G)| G E1-D L
C L 1-D
B
x| C |, (54)
-G,
where Eqs. (43)—(47) and the property (A|H|B) = (Af|H|

Bf)* were used. Matrices G and L are defined through
G = —(qqlVIa") . (55)

L? = —(¢'q'|V|qq) - (56)

Since we are using an approximate reference ground
state correct to first order in perturbation theory, the
hermiticity of H is guaranteed through that order [18].
However, the particular form of matrices G and L en-
sures that they are also Hermitian through second order.
From this, it is easy to see that the matrices in Eq. (54)
are real and symmetric, and so the square one may be
expanded using the FEIM method.

From Egs. (9), (16), (17) and (20), the first terms of
the FEIM expansion are easily obtained:

F99 = (—ES—A)"" | (57)
poadd — (F1 D) | (58)
F(qq) = [(~ES — A — C(~£1-D) '] o

—(-ES—A)"" . (59)



As stated in Sect. 2, F49 could be regarded as the
term which describes the propagation of the interaction
of pairs h — p through elements of the same manifold;
F99(qq) represents the same interaction, but is trans-
mitted through the manifold 2h —2p. The FEIM
method thus provides a practical way to isolate the
total interaction of two elements of the operator
space transmitted through a given subset of electronic
excitations.

It is evident that the self-energy associated with the
second-order PP (Eq. 48) is equivalent to considering in
Eq. (54) the inverse matrix being approximated as

(flET — H|f) ™'
F¥9 4+ F(qq) 0 0

1

0 palatala o | . (60)
0 0 0

Known approximations levels to the PP appear as
special cases of the application of the FEIM method to
the inverse matrix in Eq. (54): retaining only F%9 in
Eq. (60) is equivalent to the RPA [10], and by includ-
ing only F%9 and FqTqT’qTq', one recovers the self-energy
of the second-order p-h propagator written in parti-
tioned form [18]. We notice that the FEIM expansion
takes into account in a natural way collective ef-
fects [19], represented by diagrams summed to infinite
order.

This expansion thus represents an alternative way to
obtain approximate expressions for the PP where, for a
given operator manifold, the criterion to include or not
different terms in the expansion is not directly the order
in the residual potential, since each FY(---) includes
terms summed to infinite order, but the type of inter-
action terms and transmission paths one wishes to
include in the calculation.

This criterion, based on a selective choice of contri-
butions, offers an interesting way to improve the results
obtained with a PP consistent to a given order (excita-
tion energies, response properties, etc.). This is the
case, for example, in systems where the perturbative
series of the PP converges slowly, since selected new
FY(ky,...,k;) terms may be simply added to the existing
ones, without the need to calculate the propagator or its
self-energy completely to the next order, and terms
which are suspected of having negligible contributions
may be omitted in a first attempt.

In the example of Eq. (60), inclusion of new terms,
such as F9%99 Fad(qiqh), F49'9' etc., is equivalent to
adding in the perturbative scheme of the p-h propaga-
tor certain infinite sums of terms which begin beyond
the third order [18]. Thus, a complete calculation of the
p-h propagator to third (or higher) order is avoided,
and instead selected infinite sums of diagrams are
included.

The criterion for including terms in the FEIM ex-
pansion as outlined here should be based on the physical
characteristics of the system under consideration and
may be applied to other propagators or perturbative-like
calculations.
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5 Conclusions

Within the superoperator formalism, an alternative
approach for the p-h propagator is presented, based
on a FEIM which appears in the propagator formula-
tion.

In the FEIM method, the terms that in the pertur-
bative series of an N-dimensional inverse matrix X!
involve elements X,, (with mneK={ij <i <---
<p}ien<y) are collected in only one term. Since the
number of subsets of indices, K, is finite, this expansion
is finite.

When applied to the p-h propagator, each contribu-
tion in the finite expansion can be interpreted as de-
scribing the propagation of the interaction through a
given subset of electronic excitations. Since each con-
tribution includes corrections to infinite order, collective
effects are taken into account in a natural way.

For approximate schemes for the propagator, the
criteria for the selection of terms are based on the type of
interaction terms and the transmission paths one wishes
to consider and not on the perturbative order in the
electronic interaction. The results obtained with a given
initial choice of contributions in the FEIM might be
easily improved by adding more terms to the initial ones.
Known approximation levels to the PP, such as
the RPA, could be regarded as a special case of this
approximation scheme.

Although the FEIM method can also be applied for
numerical computation of inverse matrices, its main
utility is as a theoretical tool. However, since this
method is absolutely general, it can be applied to other
types of propagators and perturbation-like problems
where an inverse matrix is involved. Also, by comparing
results obtained by including different terms in the
FEIM, a powerful tool for the analysis of the trans-
mission paths of the interaction is achieved.
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